
International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 90
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

An Oversight on Mutation Testing
Deepika Sharma

Research Scholar, Department of Computer Science and Applications, Kurukshetra University, Kurukshetra,
Haryana

Email: lakhanpal_deepika@yahoo.in
Sanjay Tyagi

Assistant Professor, Department of Computer Science and Applications, Kurukshetra University, Kurukshetra,
Haryana

Email: tyagikuk@gamil.com

Abstract
Traditional testing methods only measure the execution of code. They do not take into account the
actual detection of faults in the executed code. It is therefore only able to test the execution of code
and not the faults. Mutation testing is an important method of fault revealing. The main aim of
mutation testing is to test the quality of test cases in such a way that it should be able to fail the
mutant code. Mutation testing also called as fault revealing strategy because here faults are
introduced in the program and then different test cases are applied on the mutant to find bugs in
the mutated program. It is the process of rewriting the source code by introducing changes in small
ways to remove the redundancies in the source code. This paper reviews the mutation testing
concept, effectiveness of test cases, categorizes the mutant and focus on the techniques to reduce
mutant.
Keywords: Fault revealing, Mutant, Mutation Testing, Test case.

1. Introduction

Software testing is very important phase among
all phases such as requirement analysis, design,
and implementation etc in software development
life cycle. Out of this, software testing plays a
very crucial role in software development. If the
testing of software is not appropriate, then there
is a tradeoff in the quality of the software
product. There are generally three main type of
testing such as unit testing(in which each
component of the product will be tested),
integration testing(in which some of components
are integrated and then testing will be
performed) and system testing(in which whole
system is tested before deliver it to the
customer)[1]. Here our focus is on unit testing.
If unit testing doesn’t find any bug or error, it
does not mean that there aren’t any bugs in the
program. For this, mutation testing is used to test
your test cases.
Mutation testing evaluates the quality of existing
software tests. The idea is to modify (mutate)
code in a small way and check whether the
existing test set will detect and reject the change.
If it doesn’t, it means that the tests do not match

the code’s complexity and leave one or more of
its aspects untested. Detecting and rejecting such
a modification by the existing tests is known as
killing a mutant. It is a structural or fault based
testing, which uses the structure of the code by
introducing some faults in the code to guide the
testing program. Mutation was originally
proposed in 1971 and the research on mutation
testing was implemented by Timothy Budd in
1980 [2], but it will not become popular at that
time due to high cost involved. But now again it
has been opted for testing the quality of test
cases, and widely used for various languages
such as java, xml. According to Budd “Mutation
testing is a fault based testing technique in
which we seed the errors in the program and find
the errors” [2].
This paper is organized as follows: Section II
introduces the mutation testing, describes how to
calculate the mutation score after killing the
mutant, effectiveness of test cases and
categorizes the mutants. Section III discusses
about the related work in this field. Section IV is
about equivalent mutant which is a halting
problem. Section V discusses about the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 91
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

techniques to reduce mutants. Section VI brings
the conclusion and future scope of the paper.

2. Mutation Testing

Mutation testing is a method of introducing
errors in the program for accessing the quality of
test cases was proposed by the Hamlet [3]. In
mutation testing, some changes are introduced in
the program called the mutated program and
then the test cases are applied on the mutated
program to analyze the output as whether it is
able to find error or not. According to competent
programmer hypothesis the programmer always
commit small mistakes during coding. That’s
why only simple errors will be introduced in the
program and if test cases are able to find simple
error then it can also able to find much more
complex error. Mutants are generated by using
different operators in the program known as
mutant operators [4] or by changing any
statement of the program. As in fig 1, Mutants
are generated by seeding some faults in the
program and then test cases will be executed on
the mutant program. If the test is able to find
errors in the mutated program or produce
different output then, it is said to kill the mutants
otherwise mutant remains alive because it may
be equivalent to the original program or the test
cases taken are inadequate to find errors. If the
mutant program produces the same output for all
test cases then, it can’t be killed and called as an
equivalent mutant.
It is used to test the quality of test suite by
killing the mutants and if is not able to kill the
mutants then the test suites are inadequate. A
test set which kills the entire nonequivalent
mutant is said to be adequate.

2.1. Mutation Score

The Mutation score is calculated by dividing
total number of nonequivalent mutant from total
number of killed mutants [8, Mutation score
always lies between 0 to 1. If mutation score is 1
then it implies the 100% adequacy of test cases.

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒔𝒔𝒔𝒔𝒎𝒎𝒔𝒔𝒔𝒔 = 𝒌𝒌𝒎𝒎𝒌𝒌𝒌𝒌𝒔𝒔𝒌𝒌 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒌𝒌 𝒎𝒎𝒎𝒎. 𝒎𝒎𝒐𝒐 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔−𝒔𝒔𝒆𝒆𝒎𝒎𝒎𝒎𝒆𝒆𝒎𝒎𝒌𝒌𝒔𝒔𝒎𝒎𝒎𝒎 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

An interesting case arises when a test set does
not distinguish any mutant and all mutants
generated are equivalent to the original program.
In this case, distinguished mutant (killed) and
live mutant is equal to 0 and the mutation score
is undefined. It does not mean that test set is
inadequate. In fact, the set of mutants generated
are insufficient to assess the adequacy of the test
set.

 Figure 1: Mutation Testing Process [5]

2.2. Effectiveness of Test Cases

Test cases are effective by calculating the
relation between Effectiveness of test case (E),
mutation score and average number of test cases
[5]-

𝑬𝑬 =

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒔𝒔𝒔𝒔𝒎𝒎𝒔𝒔𝒔𝒔 ∗ 𝒎𝒎𝒆𝒆𝒔𝒔𝒔𝒔𝒎𝒎𝒂𝒂𝒔𝒔 𝒎𝒎𝒎𝒎.𝒎𝒎𝒐𝒐 𝒎𝒎𝒔𝒔𝒔𝒔𝒎𝒎𝒔𝒔𝒎𝒎𝒔𝒔𝒔𝒔
𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎𝒌𝒌 𝒎𝒎𝒔𝒔𝒔𝒔𝒎𝒎 𝒔𝒔𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔

Average numbers of test cases are calculated by
dividing killed mutants from total number of
dead mutants.

𝑨𝑨𝒆𝒆𝒔𝒔𝒔𝒔𝒎𝒎𝒂𝒂𝒔𝒔 𝒎𝒎𝒎𝒎.𝒎𝒎𝒐𝒐 𝒎𝒎𝒔𝒔𝒔𝒔𝒎𝒎 𝒔𝒔𝒎𝒎𝒔𝒔𝒔𝒔 =

𝑲𝑲𝒎𝒎𝒌𝒌𝒌𝒌𝒔𝒔𝒌𝒌 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔
𝑵𝑵𝒎𝒎.𝒎𝒎𝒐𝒐 𝒌𝒌𝒔𝒔𝒎𝒎𝒌𝒌 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 92
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

2.3. Types of Mutants

A mutant is classified into one of the three types:
error revealing, error hinting and reliability
indicating [1].
2.3.1 Error Revealing:- A mutant M is said to

be error revealing for program P if there
exists at least one test case for which
program P(t) is not equal to the mutated
program M(t).

2.3.2 Error Hinting:- A mutant M is said to
be error hinting if program P is
equivalent to mutated program M but
does not equivalent to the correct
version of program Pc

2.3.3 Reliability Indicating:- A mutant M is
said to be as reliability indicating if
program P (t) is not equal to mutated
program M (t) for some test cases but
corrected version of program Pc is equal
to program P.

3. Related Work

A paper on “An empirical based mutation testing
through effective test data” has been presented
for object oriented software [6]. Here classical
approach was used for object oriented
programming and specified the effectiveness of
mutation testing in it
A.Ramya et al. has been provided an overview
of mutation operators that plays an important
role in mutation testing and also about the tools
that help in automating the process in various
languages has been specified [4].
The mutation testing process with cost reduction
techniques were explained in the review paper
on mutation testing [5].The process of mutation
testing was discussed for finding faults in the
mutant program.
 A cost reduction technique has been proposed
and the complexity of mutation testing has been
reduced by using the concept of meta-data
versioning [7]. Here metadata version tables
were created which keep track of changed
values, previous values before that changed, and
timestamp of the transaction. This study
presented both the advantages of providing the
highest level of mutation coverage and reduction
in space complexity.

A paper “A manifesto for higher order mutant”
has been presented in which single higher order
mutant was created to perform the testing
process instead of more than one first order
mutant to reduce the time and space complexity
of mutation testing [8].

4. Equivalent Mutants

Equivalent mutants are those mutants which
results in same output for every test case due to
many reasons such as there may be same
semantic with different syntax of program, the
test cases never reach to the mutated statement,
and error can’t propagate to the output statement
where the results was taken etc.
Given a mutant M of program P, then M is
equivalent to if P (t) = M (t) for all possible test
inputs t. That means, if M and P behave
identically on all possible inputs, then two are
equivalent[1].

Program(P) Equivalent

Mutant(M)

For(int i=10;i>5;i--)
{
Fprintf(‘Value of I is
%d’,i);
}

For(int i=10;i!=5;i--)
{
Fprintf(‘Value of I is
%d’,i);
}

Here, In the diagram, an equivalent mutant is
generated by changing the greator
than(>)operator into not equal to(!=) operator. If
the statement within the loop doesn’t change the
value of i, then the program (P) and mutant (M)
will produce the same output.
The general problem of determining whether a
mutant is equivalent to its parent is not decidable
and equivalent to the halting problem. Hence, in
most practical situations, detection of equivalent
mutants in mutation testing is done by the tester
or by using automated testing tools through
careful analysis [9]. And it is an interesting topic
of research for automated detection of
equivalent mutant.

5. Techniques to Reduce Mutants

As mutation testing is very time-consuming
task, so some techniques must be required to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 93
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

reduce the effort and time of mutation testing
process. One of the technique is the reduction in
number of mutants in which the subset of
mutants M’ will be find such that subset of
mutants MS_T(M’) is equivalent(=~) to total
number of mutants MS_T(M). There are four
techniques available to reduce the mutants as:-
5.1. Mutant Sampling: It is the simplest

approach in which a small subset of mutants
will be chosen randomly from the entire set
of mutants. In this approach y% of mutants
are selected randomly from the total number
of mutants and remaining are discarded. It
was first performed by Budd [2].

5.2. Selective Mutant: In this approach, number
of mutants can be reduced by reducing the
number of mutant operators used. This is the
basic idea which finds the subset of mutated
operators from the entire set of mutants
without significant loss of test effectiveness.
It is more superior than mutant sampling and
was first proposed by Mathur [1]. Offut [10]
extended the work by omitting four and six
selective mutation operators. Mutation
operators are divided into three categories:
statement, operands, and expressions [1].
Namin [9] performed his research work on
selective mutant problem by formulating it
into statistical problem..

5.3. Mutant Clustering: It was proposed by the
Hussain [11] .Instead of selecting mutants
randomly, subset of mutants will be chosen
using some clustering algorithm. Different
clusters will be created based on the killable
test cases and each mutant that lies on the
same cluster must be killable by a similar set
of test cases. In mutant clustering, a small
subset of mutants is chosen from each
cluster for mutation testing process and
remaining are discarded.

5.4. Higher Order Mutation (HOM): Higher
order mutants are those mutants that contain
more than one change in the program. Here,
rare but valuable and less complex higher
order mutant must be find that denote a
subtle fault. Harman introduced the concept
of HOMs [12]. HOM is sometimes harder to
kill because it results in very complex
structure of the program so it is always
preferable to handle it carefully and less
preferable than other techniques.

6. Conclusion

This paper introduces an overview on mutation
testing and the process of mutation testing to
distinguish between live mutants and kill
mutants based on various test cases. On the basis
of dead mutants and equivalent mutants,
mutation score is calculated which specify the
effectiveness of mutation testing by calculating
the relationship between test cases and mutation
score. After that various types of mutant are
specified based on the various conditions.
Mutation testing is an expensive method due to
high effort and cost involved. Various
techniques are described in the last phase to
reduce the number of mutants which require lots
of effort to find the subset of mutants.
The future scope of mutation testing will be the
reduction in cost and time consumption by fully
automating the testing process and also by
reducing the equivalent mutant problem.

BIBLIOGRAPHY

[1] A. P. Mathur, Foundation of software

testing, Pearson publication, 2009.
[2] D. A. T.A Budd, "Two Notions of

correctness and their relation to testing,"
Acta Informatica, pp. 31-45, march 1982.

[3] .. h. R, "Testing programs with the AID of a
Compiler," IEEE Transactions on software
engineering, 1977.

[4] S. P. A Ramya, "An oversight on mutation
testing," International journal of
engineering Research & technology, jan
2014.

[5] P. K. Chaurasia, "Mutation testing:A
Review," Journal of global research on
computer science, Feb 2014.

[6] D. S. Prasad, "An emipirical based mutation
testing through effective test data,"
International journal of advanced research,
may 2015.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 94
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

[7] r. B. R. M. R. A. Anu saini, "Reducing the
cost and complexity of mutation testing
using metadata versioning," IJERT, may
2013.

[8] M. .. H. Y.Jia, "A Manifesto for higher
order mutation testing," CREST center
King's College, London, 2009.

[9] J. A. A.S. Namin, "Finding sufficient
mutation operators via variable reduction,"
in Proceedings of the 2nd workshop on
mutation analysis , Raleigh, North carollna,
Nov 2006.

[10] A. offut, "Investigations of the software
testing coupling Effect," ACM transaction
on software engineering methodology, jan
1992.

[11] S. Hussain, "Mutation Clustering," Master's
Thesis,King's College, London, 2008.

[12] M. h. Y.Jia, "Constructing subtle faults
using higher order mutation testing," in
International working conference on source
code analysis and manipulation,
Beijing,China, sept 2008.

IJSER

http://www.ijser.org/

